

Water-Energy-Food Nexus for Asia's food security

Alok Sikka

9th ARC, ICID 1st Sep 2024

Innovative water solutions for sustainable development Food · Climate · Growth

Asia Food security hinges on Irrigation

• Asia's Challenge: With 36% of global freshwater, Asia supports 60% of the world's population.

•Over <u>75% of Asia is water insecure</u>, countries > 90% of population already facing water crisis

• Irrigation in Asia was critical to usher in the Green Revolution, lifting millions out of poverty and ensuring food security.

- •90 % of water withdrawals
- •Agriculture is the biggest consumer of water- many countries rely heavily on groundwater
- •South Asia has the largest share of agricultural water use (91%)
- 570 million ha is cultivated, of which 216 million ha equipped with irrigation (~ 41 %)
 - India and China combined > 50 % of cultivated and irrigated land
- South Asia is where WEF nexus is most dominant, High intensity agriculture, high population density

			% of		
	% of country area	% of area	groundwater	% of total water	Dopulation donsity
	Cultivated	Ingaleu	Ingation	withurawai	Population density
Central Asia	7.8	67.4	2.4	76.7	38.8
East Asia	12.6	48.6	21.4	63.9	242.9
South Asia#	29.9	42.7	32.4	81.2	527.4
South East Asia	21.0	18.7	3.8	70.4	140.0
Western Asia	13.0	55.2	48.4	63.8	299.6

#Exlcude Island country Maldives

Centrality of Groundwater to South Asian Agriculture

SA supports **25% of the world's population** with just **4.6% of the world's water resources**

About 40% of cultivated land is irrigated, with

agriculture consuming over 90% of water use-achieving food security through ground water irrigation

About 60-80 % of irrigated area is serviced by groundwater in India, Bangladesh and Pakistan

Over **30 million groundwater pumps abstract** about 350 billion cubic meters of groundwater annually

Increasing energy demand-India alone consuming 20% of energy in agriculture (largely GW pumping)

World Bank (2020)

GW Irrigation-Energy Nexus

Free / subsidized farm power (India)+ water intensive crops \rightarrow GW depletion in western and Southern India; Pakistan, NW Bangladesh

- Unsustainable groundwater abstraction produces enough food to feed 173 million people.
- Wells going dry/deeper entails more energy use and pumping more expensive
- Lack of farm power → Under-irrigation and low productivity in some parts-ex. eastern India, parts of BD, Pakistan

The AWM system consists of multiple subsystems at multiple levels with multiple components with inherently complex feedback-with water, energy & food intrinsic relationship.

IWM WEF Nexus approach for sustainable AWM

Water, energy and food are interlinked, either synergistically or adversely

So, water cannot be managed in isolation

Framework/tools for holistic Agricultural Water Management with a nexus lens

-Soil Health

Improved Income

AWM-related policies and institutions have remained vertically and horizontally fragmented, compartmentalised and disconnected

-Energy availability & source energy use efficiency Increased Energy Productivity **Demand management** - Reduced GHG Emissions

Some common methods for assessing WEF nexus in Water Management

- Integrated modelling frameworks

 e.g., Agricultural Water-Energy-Food
 Sustainable Management (AWEFSM)
 model, Integrated Hydrologic
 Modelling
- Composite/integrated WEF indices as aggregation of indicators
- sustainability polygons / radar charts
 / spider diagrams

WEF nexus performances of different irrigation technologies-Meta review

 IOP Publishing
 Environ. Res. Lett. 17 (2022) 073003
 https://doi.org/10.1088/1748-9326/ac7b39

 ENVIRONMENTAL RESEARCH
 LETTERS

TOPICAL REVIEW

CrossMark					
U	Sustainable irrigation technologies: a water-energy-food (WEF)				
OPEN ACCESS	nexus perspective towards achieving more crop per drop per joule				
received 1 April 2022	per hectare				
REVISED 16 June 2022	Cuthbert Taguta ^{1,2,*} , Tinashe Lindel Dirwai ^{3,4} , Aidan Senzanje ^{1,5} , Alok Sikka ⁶				
ACCEPTED FOR PUBLICATION	and Tafadzwanashe Mabhaudhi ^{2,7,*}				

Silo-based performances visualised in sustainability www. polygons

Integrated WEF nexus-based approach to appraise performance of irrigation systems-an example

Integrated WEF nexus performance of irrigation systems in (a) dry, (b) temperate, and (c) tropical climates; impacts of irrigation modernisation on the water, energy, and food performance from a silo approach in (d) dry, (e) temperate, and (f) tropical climates; and impacts of irrigation modernisation on the WEF nexus in (g) dry, (h) temperate, and (i) tropical climates.

IWM

(Taguta et al., 2022, Environ. Res. Lett)

WEF Composite Index with IE increased from 38% to 75% (Adoption of MI System in all BAU poor performers)-an example

performance was kept as base

Water and Energy Smart Solar Irrigation-Nexus Gains

On-grid SIP: a GW-benign solar irrigation

SPaRC: Solar Power as Remunerative Crop

Incentivizing farmers to save GW via Feed in Tariff for evacuating energy to grid

Water and Energy Smart Solar Irrigation-Nexus Gains

IWM

Solar Irrigation Entrepreneurs in IGB: Off-grid

X	S

SPIS Sizing Tool – Excel Version

BEFORE: Oligopolistic Sellers' MarketAFTER: Competitive Buyers' MarketFee-for-service model for SIP with private
sector as ISPs --- IDCOL in Bangladesh• Irrigation cost: ₹2,500-3,000 per Ha• Irrigation cost: ₹1,500-1,800 per Ha• 20-30% reduction in irrigation tariff• Incomplete coverage, unmet demand• Each s-ISP sells to 80-100 buyers• Time and labour saving for water buyers• Delayed Kharif; no third crop• Improved cropping and irrigation intensity• Targeted for boro growing regions – no
change in GW application behaviour

Eastern India – farmers as SISP

Bangladesh – Private companies/NGOs as SISP

SISP: Solar Irrigation Service Providers

Increased access to water in GW rich eastern India and Bangladesh -improved CC adaptation

SIP Sizing Tool developed jointly by ICAR, IWMI and CCAFS for MNRE / PM-KUSUM, with support from GIZ and WLE

GW Sustainability under Solar Irrigation

GW Vulnerability based SIPs with a WEF Lens-Pakistan

Conclusions and Way Forward

- Sustainable agricultural water management will require integrated approach to increase productivity while optimising water and energy use efficiencies and environmental health
- It is important to understand and analyse trade-offs and synergies of various AWM interventions with a WEF nexus lens
- The WEF nexus approach has potential to holistically appraise performance of AWM as opposed to silo-based approach
- Consider relative importance and priorities of AWM interventions in local WEF nexus case studies
- Irrigation modernization to be complemented with sound basin-wide water management to realize WEF nexus benefits.
- Develop and test improved integrated data-driven nexus-based AWM analytic tools that guide implementation of AWM practices and technologies
- Policy coherence for aligning and streamlining incentives and signals of different policies to target groups for minimum conflicts, through coordination and integration between government agencies.

Thank you...

Innovative water solutions for sustainable development Food · Climate · Growth

Reduction in water consumption due to MI system (IE 38% to 75%)

NEXUS Gains: Realizing Multiple Benefits Across Water, Energy, Food and Ecosystems

* ALMORA, PAURI GARWAL, BIJNOR

www.cgiar.org