

NEXUS Gains: Realizing Multiple Benefits Across Water, Energy, Food and Ecosystems

Trade-offs and Foresight Analyses of WEF Interventions in The Ganges Basin

D R Sena, M F Alam, A K Sikka

INTERNATIONAL COMMISSION ON IRRIGATION AND DRAINAGE (ICID) International Workshop on

"The water-energy-food-ecosystems nexus: trade-offs and foresight analysis for policy and investment decisions"

O1 September 2024, 1300-1630 hour, Sydney, Australia (Room: E3.1)

International Water Management Institute

Outline of presentation

- Purpose of WEF Nexus
- Integrated Modeling Framework
- Database
- Model Setup/Adaptation
- Dashboard for Policy decision automation
- WEF Trade-off Index (composite)
- Scenario Analysis example

Purpose of WEF Nexus

Co-developing methods for foresight and trade-off analyses tools (Integrated modeling tools)
Enable the identification of losses and gains under business-as-usual and alternative development pathways (scenarios), across various sectors (Water, Energy and Food)

Ganges, Aral and Nile

Incoherent WEFE policies

- Ministries have developed and announced policies concerned with their domain area.
 - water and food are State subjects
- Different policies were formed at different times.
- The policies of different sectors give inadequate consideration to the impacts of decisions on the other related sectors

National Policy (2	Water 2012)	Energy (20	Policy 17)	Nationa Biofue	l Policy on Is (2018)
Natio Agricultur (200	nal e Policy 4)	Nationa Policy	l Forest (1988)	Enviro proteo (2	onment ction Act 006)
	Nat Agrof Policy	ional orestry (2014)	National diversi (20	Biological ty policy 012)	

Qualitative trade-offs of programmes

NEXUS Gains: Realizing Multiple Benefits Across Water, Energy, Food and Ecosystems

- More than ≈ 40 programmes across WEFE sectors were studied to understand the efforts underway in these sectors to attain the respective policy goals
- Significant overlaps among the programmes which could positively or negatively impact security concerns among the sector(s).
- Need to quantify the trade-offs by using **integrated approach including modeling** with the WEFE nexus lens.

A critical review of policies and programmes in water- energyfood-ecosystem sectors in India from nexus lens

Sharad K. Jain^{1*}, Alok K. Sikka², Mohammad Faiz Alam²

¹Indian Institute of Technology Roorkee, India, ²International Water Management Institute, Sri Lanka

Submitted to Journal: Frontiers in Water

Specialty Section: Water Resource Management

Integrated Modelling Framework

NEXUS Gains: Realizing Multiple Benefits Across Water, Energy, Food and Ecosystems

www.cgiar.org

Database (all open access)

85 0'D'E

75'0'0"E

90'0'D'E

NEXUS Gains: Realizing Multiple Benefits Across Water, Energy, Food and Ecosystems

90'0'0'E

75'0'0'E

(SWAT+) + gwflow

www.cgiar.org

Hydraulic conductivity zones

85'0'0'E

80'0'0'E

75'00'8

80'00'E

Specific Yield Zones

85'0'0"E

8010'0"E

https://aps.dac.gov.in/APY/Public_Report1.aspx

Database for calibration/ Validation

- Calibration Streamflow data at Hardinge Bridge (Bangladesh) (2000-2008)
- Validation GLoFAS data (2012-2021) - <u>https://cds.climate.copernicus.eu/cdsapp#!/dataset/efas-historical?tab=form</u>

Water balance of Ganges Basin

	******		111
DET	Evaporation and	111	11
1,114,71	620.22		Average Curve Number
1.1.2.2.2.0	029.22		40.01
Plant ET		, Precipitation	Irrigation
88.65		1,140.51	87.39
Soil FT		11111	
487 26	2		Tile
Root Zone	TAL TALL	Infitration/plant uptake/ Soll moisture redistribution	Surface 305.42
Vadose (unsaturated) Zone			Lateral Flow
	Revap from shallow aguiter	Percolation to shallow aquifer	Return Flow
Shallow (unconfined)	141.50	300.37	126.88
Shallow (unconfined) Aquifer	141.50	300.37	126.88
Shallow (unconfined) Aquifer Confining Layer	141.50	300.37	126.88
Shallow (unconfined) Aquifer Confining Layer Deep (confined)	141.50	300.37 V V	126.88
Shallow (unconfined) Aquifer Confining Layer Deep (confined) Aquifer	141.50	300.37 ↓ ↓ ↓ Recharge to deep aquiter	126.88

NEXUS Gains:

Kumar et al. (2010); Kumar et al. (2016); Mishra et al. (2007); Khan et al., (2019); Dhar & Nandargi (2013); Mishra & Singh (2007); Sharma et al. (2016)

SI	Flux Contribution	% of Precipitation	Previously reported*
A)	AET	55%	(32%-84%)
B)	Streamflow	39%	(25%-38%)
	(a) Runoff	27%	
	(b) Baseflow	12%	
C)	Groundwater Recharge	26%	(17%-29%)

SWATable Interface

NEXUS Gains: Realizing Multiple Benefits Across Water, Energy, Food and Ecosystems

www.cgiar.org

Dashboard for Automated Scenario Generation

NEXUS Gains: Realizing Multiple Benefits Across Water, Energy, Food and Ecosystems

C 127.0.0.1:3435 $\widehat{}$

0

0

Ċ.

M

14

01

5

P

ь

0

B

b

Pri

9

D

Ganges District Typologies

Where Irrigation Coverage is	Select State:
%0 %60 %100	All
0 10 20 30 40 50 60 70 80 90 100	Increase Irrigation Coverag to
%0 %50 %100	50
0 10 20 30 40 50 60 70 80 90 100	Contribution of groundwate
Where Cropping Intensity is	75
100 %250 %300 100 140 180 220 260 300	Contribution of surfacewater:
Where Groundwater Development is	25
%0 %220 %300	Process Data
0 30 60 90 120 180 240 300	
La Download Excel	

District data

Open	Save as 🛛 🗸	e
IWR need	Million m3	1853103.4
SW use	Million m3	463275.9
River outflow	%	From SWAT
GW use	Million m3	1389827.6
GW development	%	Value 4
Energy use	kWh	Value 5
GHG emissions	tCO2e	Value 6
Food production	Tonnes	Value 7
Yield	ton/ha	Value 8
Evnvironment flows	%	From SWAT

Number of districts 114 Total increase in irrig

Total increase in irrigated area ('000 hectares): 321719.4 Total increase in GW irrigated area ('000 hectares): 241289.5 Total increase in SW irrigated area ('000 hectares): 80429.84 Mean increase in irrigated area (percent): NA

WEF Nexus Sustainability Index

www.cgiar.org

Example of

NEXUS Gains: Realizing Multiple Benefits Across Water, Energy, Food and Ecosystems

Increase in irrigation efficiency

Change in WEF

Some districts representing WEF indices across the Ganges basin

WEF-Nexus Interface

SWAT- FABLE Calculator soft linkages (ongoing)

NEXUS Gains-WP1

Realizing Multiple Benefits Across Water, Energy, Food and Ecosystems (Forests, Biodiversity)

Contact:

- Matthew McCartney, IWMI, Lead
- Claudia Ringler, IFPRI, Co-Lead
- Alok Sikka, IWMI, Ganges Lead
- Mohsin Hafeez, IWMI, WP1 lead

CGIAR

- : <u>m.mccartney@cgiar.org</u>
- : <u>c.ringler@cgiar.org</u>
- : <u>a.sikka@cgiar.org</u>
- : <u>M.Hafeez@cgiar.org</u>

Formulation of WEF index (Agriculture context)

