

Water – Food – Energy Nexus for Food Security

E Schmidt

Industry Fellow - University of Southern Queensland

Background

• Water, food and energy form a nexus at the heart of sustainable development

The Nexus approach identifies the mutually beneficial interactions of water and energy in food production. It represents a framework for determining the tradeoffs and synergies that maintain the sustainability of agricultural production and ecosystems

- Demand for water, food and energy is increasing rapidly. We require integrated and sustainable management of all three aspects to balance the needs of people, the environment and the economy
- Agriculture is the largest consumer of freshwater resources (70%), and more than 25% of the energy used globally is expended on food production and supply

Global Challenge: Water-Food-Energy

Food

- Demand rising: Population growth & wealth, competition animal feed and biofuels.
- Supply constraints (e.g. climate change, land and water availability).
- Rising global food prices.
- Cereals main food. Need for diversification into high value nutritional crops
- Improve household nutrition and income.
- Reduce food waste

Energy

- Rising cost of energy
- Reliability of electricity (especially in many developing countries.
- Demand management and system efficiency improvements.
- Opportunities for renewable energy (Solar, Wind, biofuels, biogas).
- Policy and subsidy influences.

Water and Land

- 60% of global population are facing water scarcity
- Climate change/variability accelerating the impacts of water scarcity and land degradation.
- Limited arable land. Increasing population growth with competition from other land use.
- Over-exploitation of water and soil resources inefficient farming practices and land degradation.

Australian Context - Murray Darling Basin

- Area: 1million sq km
- Length: 3300km
- 5 States/Territories
- 77,000km of river systems
- Low rainfall and high evaporation
- 66% of Australia's irrigated area
- Agricultural Production: \$25bn annually
- Market driven agricultural systems
- Labour availability and cost
- Competitive access to water (states & sectors)
- Heavily regulated system
- Priority focus on water, energy and production efficiency

Other Factors Impacting Agricultural Production

Agricultural Production - Diverse and Complex Environment

Farmer Response

- Crop selection and management
- Water & energy demand management
- System selection
- Improvements to system efficiency
- Precision irrigation
- Tariff switching
- Alternative energy & water sources
- Automation & Autonomous systems
- Whole farm water management

Diverse Agricultural Systems Supply Chain

Need for Innovation and Integrated Solutions

Technologies

- Technologies that are demand driven, leading to adoption and commercialisation.
- Scalable regionally appropriate technologies
- Multidisciplinary approach to projects researchers, businesses and government organisations

New Knowledge

New scientific knowledge and better communication to improve adoption and impact.

Capability Building and Training

Building capability of institutions and individuals. Combining formal education and training programs with 'learning-by-doing' skills

Better Decisions

Improved policies, regulation and governance. Better engagement with decision-makers to improve uptake. Integration of data and information. Informatics and decision support tools

Need for Innovation and Integrated Solutions

Partnerships

- International and national partnerships (e.g. DFAT (ACIAR) and CRC One Basin)
- Partnerships among research providers, the private sector, public and non-government extension and development organisations.
- Cross-disciplinary and interdisciplinary partnerships and approaches.

Changing Perceptions

Promote agriculture as a critical business and valued profession. Improve communication, promotion and perception

Conclusion

- Agriculture is an extremely diverse and complex enterprise, including food production, processing and distribution.
- It is impacted by complicated biological, environmental, social, political and financial factors.
- The water-food-energy nexus requires collaborative research and development to improve our understanding of the farm and supply chains food production and energy and water tradeoffs and associated management options
- We require integrated and sustainable management of water and energy and other resources to balance the needs of people, the environment and the economy.
- This will require innovative partnerships and solutions which focus not only on technology but also people development and training, our regulatory environment, economic and environmental sustainability.

Thank you

E Schmidt

University of Southern Queensland, Toowoomba, Australia

schmidte@unisq.edu.au

CRICOS QLD 00244B | NSW 02225M TEQSA: PRV12081