

Cost-effective, fit-for-purpose modernization (infrastructure & management) at the farm level.

Stephen Attard

AgriTech Solutions

Sunday 1st September 2024

9th Asian Regional Conference, Irrigation & Drainage

Overview

 Sharing insights and experiences around the uptake of "fit-for-purpose" technology to improve irrigation practice in the Lower Burdekin sugarcane industry

- Determining value from the technology uptake
 - smart irrigation toolkit

• Examine progress over 15 years (since 2010)

Challenges for landowners

- Labour shortage
- Profitability; rising water & energy costs
- Telecommunication
- Internet speed
- Irrigation specialists

2010: 100% of the ~ 70,000 ha of furrow irrigated sugarcane is managed/operated manually.

Irrigation management is the biggest labour investment on farm.

Labour & time availability is the biggest limitation to sustained practice change.

Manual record keeping is a barrier to understanding.

Technology can remove or reduce the problem.

Generalising typical current management

- Scheduling on a fixed cycle
 - 7 10 days during peak demand periods
 - Use of scheduling tools is very low (<5% of fields using SMM)
- Volume applied
 - Fixed duration eg 10 h during the day, 14 h at night, 24 h duration
 - Management of available labour is a significant consideration
- 13-month crops are irrigated 15 to 30 times
- Record keeping
 - Very little knowledge of application (ML/ha per irrigation event)
 - Limited understanding of the cost of application (water & energy)
- All is labour intensive

Smart Irrigation Toolkit

- The current 'smart irrigation toolkit'
 - Sugarcane crop model
 - Automation and sensors for monitoring
 - Web Platform to integrate the two technologies (and eventually any others)
 - Measurement of current practice
 - Irrigation specialists providing support

Site A Field results: Productivity, Water, Input Cost

Practice		тсн	ccs	тѕн	Water Applied (ML/ha)	Industry benefits:
Manual	Fixed cycle	134	14.9	19.9	15.42	 Productivity & Gross Revenue maintained
Automation	IrrigWeb	133	15.2	20.2	10.01	 Input costs reduced Profitability improved Farmer capacity building
Saving		Water applied			5.41 ML per ha	
		Water cost			\$134 per ha	reduction

Current practice = manual operation & fixed cycle schedule = 24 irrigation events

Improved practice = automation & crop water use-based scheduling = 15 irrigations

Payback

- Costs vary due to the size of each irrigation management unit
- Typical installation cost range: \$500 to \$1,500 per ha
 - Using a 7-year useful equipment life; the cost ranges between \$100 to \$200 /ha per year
 - Site A set up cost = \$570 per ha

Cost centre	\$/ha per year	Annual benefit \$/ha	Simple payback	
Water (5.41 ML/ha; variable cost)	\$ 134			
Energy (includes recycling)	\$ 118	\$ 192	~ 3 years	
Vehicle running costs	\$ 40			
Labour	\$ 200	\$ 392	~ 1.5 years	
Additional maintenance	-\$ 100			

Automation system pushes irrigation records to IrrigWeb

	Irrigation Date	Date/Times						Date/Times			
Paddock		Start	Stop	Flow Rate L/s	Applied Depth (mm)	Paddock	Irrigation Date	Start	Stop	Flow Rate L/s	Applied Depth (mm)
А	24/03/2022	24/03/2022 8:00:00 AM	24/03/2022 6:00:00 PM	80	51.0	В	26/03/2022	26/03/2022 8:00:00 AM	26/03/2022 6:00:00 PM	98.8	61.0
А	26/06/2022	26/06/2022 12:00:00 PM	26/06/2022 9:00:00 PM	82.7	46.7	В	29/06/2022	29/06/2022 9:15:00 AM	30/06/2022 11:00:00 AM	97.5	139.9
А	27/07/2022	27/07/2022 11:00:00 AM	28/07/2022 10:00:00 AM	60.4	77.9	В	26/07/2022	26/07/2022 9:00:00 PM	27/07/2022 9:00:00 AM	96.0	69.0
А	15/08/2022	15/08/2022 9:22:00 AM	16/08/2022 11:25:00 AM	59.2	85.6	В	20/08/2022	20/08/2022 11:30:00 PM	21/08/2022 3:00:00 PM	98.8	88.9
А	27/08/2022	27/08/2022 9:45:00 AM	28/08/2022 7:00:00 AM	63.5	78.5	В	17/09/2022	17/09/2022 6:30:00 PM	18/09/2022 8:15:00 AM	106.4	86.2
А	13/09/2022	13/09/2022 9:00:00 AM	14/09/2022 7:00:00 AM	63.1	80.5	В	29/09/2022	29/09/2022 7:15:00 AM	29/09/2022 6:00:00 PM	82.2	53.9
А	21/09/2022	21/09/2022 8:45:00 AM	22/09/2022 6:30:00 AM	57.7	72.9	В	16/10/2022	16/10/2022 2:00:00 PM	17/10/2022 5:45:00 AM	82.2	75.0
А	27/09/2022	27/09/2022 8:00:00 AM	28/09/2022 6:00:00 AM	56.7	72.4	В	02/11/2022	2/11/2022 8:15:00 PM	3/11/2022 7:15:00 AM	82.1	54.9
А	04/10/2022	4/10/2022 7:00:00 PM	5/10/2022 5:00:00 PM	63	80.4	В	14/11/2022	14/11/2022 8:54:00 AM	14/11/2022 6:54:00 PM	98.0	60.5
А	11/10/2022	11/10/2022 5:00:00 PM	12/10/2022 2:00:00 PM	55.1	67.4	В	10/12/2022	10/12/2022 6:50:00 PM	11/12/2022 4:49:00 AM	98.0	60.4
А	01/11/2022	1/11/2022 3:30:00 PM	2/11/2022 1:00:00 PM	54.6	68.2	В	22/12/2022	22/12/2022 6:54:00 PM	23/12/2022 5:55:00 AM	90.0	60.2
А	14/11/2022	14/11/2022 9:51:00 PM	15/11/2022 7:50:00 PM	58	74.0	В	28/02/2023	28/02/2023 10:30:00 AM	28/02/2023 8:30:00 PM	90.0	55.5
А	07/12/2022	7/12/2022 4:00:00 PM	8/12/2022 1:59:00 PM	58	74.0	В	16/03/2023	16/03/2023 4:30:00 PM	16/03/2023 10:31:00 PM	90.0	37.1
А	14/12/2022	14/12/2022 5:49:00 PM	15/12/2022 3:02:00 PM	58	71.6	В	29/03/2023	29/03/2023 11:15:00 AM	29/03/2023 9:17:00 PM	90.0	55.7
А	21/12/2022	21/12/2022 6:24:00 PM	22/12/2022 4:54:00 PM	45	58.6	В	05/04/2023	6/04/2023 1:47:00 AM	6/04/2023 11:49:00 AM	90.0	55.7
А	26/12/2022	26/12/2022 3:23:00 AM	27/12/2022 1:23:00 AM	45	57.4						
А	31/12/2022	31/12/2022 10:00:00 AM	1/01/2023 8:00:00 AM	45	57.4						
А	26/01/2023	26/01/2023 5:41:00 PM	27/01/2023 3:41:00 PM	45	57.4						
А	15/02/2023	16/02/2023 12:31:00 AM	16/02/2023 10:31:00 PM	45	57.4						
А	01/03/2023	1/03/2023 9:26:00 AM	1/03/2023 2:08:00 PM	45	16.0						
А	03/03/2023	3/03/2023 8:24:00 AM	3/03/2023 10:24:00 PM	45	38.3						
А	15/03/2023	15/03/2023 8:02:00 PM	16/03/2023 8:01:00 PM	45	62.2						
А	23/03/2023	23/03/2023 5:26:00 PM	24/03/2023 6:10:00 AM	45	35.3						
А	30/03/2023	30/03/2023 5:17:00 PM	31/03/2023 5:17:00 AM	45	33.5						
А	04/04/2023	4/04/2023 10:50:00 PM	5/04/2023 10:51:00 AM	45	33.5						

24 irrigation events

Technology supporting farmer decision making & capacity building IrrigWeb – sugarcane crop model Records rainfall and irrigation

Irrigation scheduling based on soil type, weather, irrigation, and crop.

wetter than Field 2 during this period.

Fully Automated actuator Operated T-piece and Isolation valve

Submersible pressure sensor monitoring height of water in the cylinder.

Isolation valve (butterfly valve) in main pipeline (underground)

T-piece with 2 x butterfly valves. Each valve is open/closed by a 300mm stroke actuator (12V) WiSA Field radio, 12V with solar panel, communicates with base station.

Pump set up

Diesel or electric pumps including centrifugal, submersible or turbine

Monitoring flow and pressure in pipelines

Flow Switch

In-Line Pressure Sensor

Water height in dams, recycle pits or channels

Water height is monitored by the submersible sensor. Pump can be turned on or off depending on the height. Alerts can also be sent.

EoR Sensors

 Providing real time data on irrigation progress

Farm in One

Unit A EOR Sensors - Mon Dec 05 2022 to Wed Dec 14 2022

Set_3_FM_A_Ch1_RI06 Set_3_FM_A_Ch2_R80 Set_2_FM_A_Ch3_R54 Set_2_FM_A_Ch4_R28 B44_03 B44_02

Integrating platform: Farm in ONE

Irrigation technology transforming farmer management & thinking

Cumulative Area (ha) converted from manual furrow to automated furrow 8,000 8,000 7,000 7,000 6,000 6,000 5,000 5,000 4,000 4,000 3,000 3,000 2,000 2,000 1,000 1,000 0 0 2006 2026 2008 2010 2012 2014 2016 2018 2020 2022 2024 Area (ha)

Smart Irrigation Toolkit

- The current 'smart irrigation toolkit'
 - Sugarcane crop model
 - Automation and sensors for measurement & monitoring
 - Web Platform to integrate the two technologies (and eventually any others)
 - Baseline: measurement of current practice
 - Irrigation specialists providing support
- Technology is the "enabler" to make irrigation lower cost, more water efficient, more productive, more time efficient, more labour efficient, etc.

Stephen Attard AgriTech Solutions 0418 155 844 steve@agritechsolutions.com.au

