A simulation-based approach to determine economical irrigation depth for sweet corn considering weather forecast under saline condition

Presenter: Hamed Ebrahimian Taleshi

ICID+CIID

9th ASIAN REGIONAL CONFERENCE

Irrigation & Drainage

75th IEC MEETING

- 7 Sept 2024 | ICC Sydney

Authors:

Hamed Ebrahimian^{1,2*} and Haruyuki Fujimaki²

Department of Irrigation and Reclamation Engineering, University of Tehran.
Arid Land Research Center, Tottori University, Japan.

* Email: ebrahimian@gmail.com

Irrigation & Drainage

75th IEC MEETING

- 7 Sept 2024 | ICC Sydney

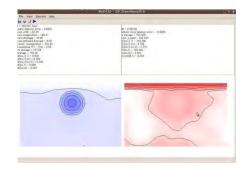
CONFERENCE AND EXHIBITION

AUSTRALIA

2 - 4 September 2024 | ICC Sydney

Irrigation and salinity management

- In times of scarcity, we are all responsible for using water wisely, efficiently, and productively.
- We must be more 'water smart' under extreme conditions (e.g., drought and salinity).
- Optimization of irrigation to improve food production and farmers' income under saline conditions.


AN REGIONAL CONFERENCE

The goals of this study

- 1. To present a new scheme to determine irrigation depth such that net income is maximized considering price of water using a numerical model, WASH-2D and quantitative weather forecast.
- 2. To evaluate whether the optimized irrigation scheme is also applicable to saline conditions,
- 3. To compare the optimized irrigation scheme with other common leaching managements.

9th ASIAN REGIONAL CONFERENCE Irrigation & Drainage 75th IEC MEETING 1 | Seet CALLERS CONFERENCE AND EXHIBITION

Field experiments & Treatments

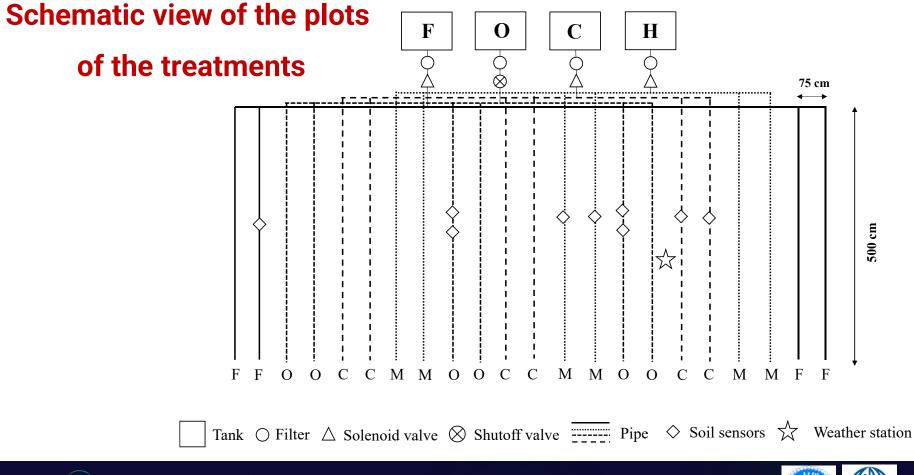
Sweet corn was sown under four treatments inside the small glasshouse (May 2022-August 2022):

C: Leaching is performed when monitored salinity in the root zone reaches at critical level of crop and amount is determined according to **FAO's** guidelines. Irrigation using saline water (2 g/L NaCl solution) is automatically performed to return volumetric water content to field capacity in the root zone (**Automated drip irrigation**).

H: as above, but the root zone **soil moisture was maintained at a high** level throughout the season, without any intentional leaching.

INFRIGATION AUSTRALIA CONFERENCE AND EXHIBITIO

Field experiments & Treatments_ cont.

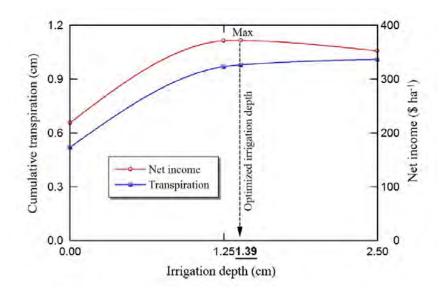

RENCE AND EXHIBITIO

O: Leaching is unintentionally performed via the **optimized irrigation scheme** using saline water. In this scheme, irrigation depth is determined such that net income is maximized considering the price of water and weather forecasts using the WASH_2D model.

F: Automated drip irrigation with **freshwater** application.

Sth ASIAN REGIONAL CONFERENCE Irrigation & Drainage 75th Icon Metting 1 State Conference (Concerno) AUSTRALIA CONFERENCE AND EXHIBITION

9th ASIAN REGIONAL CONFERENCE Irrigation & Drainage 75th IEC MEETING



WD5-WET-SDI

Virtual Net Income

 I_n (\$ ha⁻¹) is calculated on the assumption that yield of sold part of crops is proportional to cumulative transpiration at each irrigation interval:

 $I_{\rm n} = P_{\rm c} \varepsilon \tau_{\rm i} k_{\rm i} - P_{\rm w} W - C_{\rm ot}$

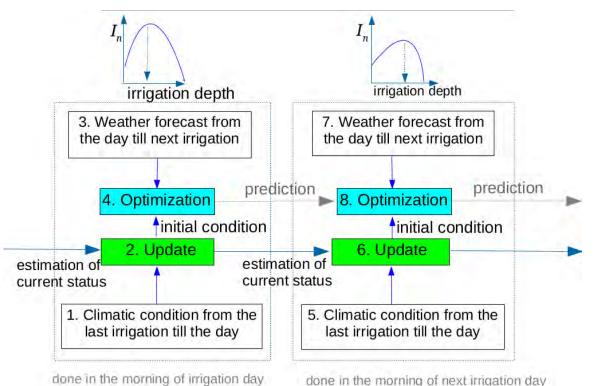
 P_{c} is the producer's price of crop (\$ kg⁻¹ DM),

 ϵ is transpiration productivity of the crop (produced dry matter (kg ha⁻¹) divided by cumulative transpiration,

 τ_i is cumulative transpiration between two irrigation events,

 k_i is the income correction factor, used to avoid underestimation of I_n due to smaller transpiration rate in the initial growth stage,

 $P_{\rm w}$ is the price of water (\$ kg⁻¹),


W is the irrigation depth (1 mm = 10,000 kg ha⁻¹),

 C_{ot} is other costs (e.g., fertilizers, pesticides, etc.) (\$ ha⁻¹).

CONFERENCE AND EXHIBITION

Routine procedure for optimizing irrigation (Fujimaki et al., 2020)

Irrigation interval: 2 days

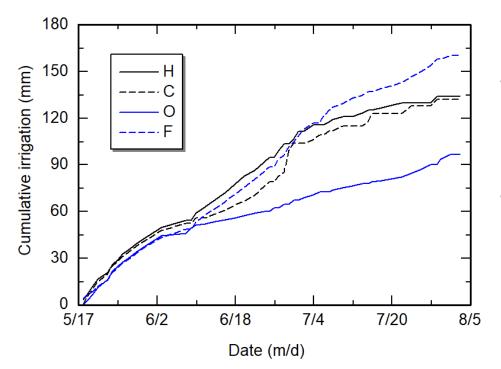
 9th ASIAN REGIONAL CONFERENCE
 Winderstand

 Irrigation & Drainage
 CONFERENCE AND EXHIBITION

 75th GO MEETING
 CONFERENCE AND EXHIBITION

 1 and additional and additional and additional additenticadditententicadditionadditional additional additinadditent

Screenshots of the user interface of WASH_2D


Swash 2D ver.0.91 - Optimization/730		
File Input Execute View Help		Optimization of irrigation amount
t = 35,000 hour t = 35,000 hour t = 35,000 hour t = 35,000 hour	Atmospheric Boundary Condition	
cum_infil = 11.10 cm2 cum_evaporation = 5.23 cm2 cum_utranspiration = 4.18 cm2 cumulative (r/ Trp) = 0.43 storage = 63.53 cm2 W[nx,nz] = -73.8 1.58 cm to refill cumulation = 1.929 cm solute mass balance error for solute 1 = 0.152% s_storage = 212.150 cum_signut = 22.259 C(1.1] = 74.684 C(1.nz] = 0.000 C(mx,nz] = 0.000 C(mx,nz] = 0.000	Aerodynamic resistance - s/cm initial soil temperature - 25 C Relative humidity of ar = 35 Start hour 9	Transpiration productivity 0.003 Price of crop 0.2 \$ / kg of dry matter Price of water 0.00025 \$/kg Irrigation start time 0 0 Irrigation intensity 0.2 cm/h Maxium irrigation depth 1 cm <
	Lower Boundary Condition for Heat Movement Type : Temperature = 25 C << Back Execute Next >>	WASH_2D X Optimum irrigation depth = 0.36cm. Expected net income is 11.22\$/ha

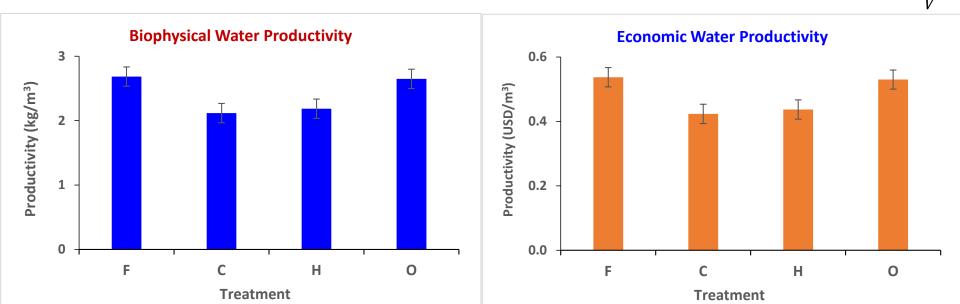
AUSTRALIA CONFERENCE AND EXHIBITION

Time evolution of cumulative irrigation depth for all treatments


- The O treatment reduced 26.7% and 27.8% of water use compared to the C and M treatments, respectively.
- The difference between the control treatment and the salinity treatments in terms of cumulative irrigation depth increased over time

CONFERENCE AND EXHIBI

Comparison of crop yield among all treatments



- The control treatment had a significant difference with the salinity treatments in terms of crop yield.
- No significant difference was observed between the salinity treatments.

Comparison of water productivity among all treatments

- The O treatment showed a significant difference compared to other salinity treatments in WP and EWP.
- This treatment did not show a significant difference compared to the control treatment in WP and EWP.

RWP

EWP

Key findings and recommendations

- ✓ There is no significant difference in crop yield between the salinity treatments, but water use was significantly reduced through the optimized irrigation.
- ✓ The optimized irrigation scheme could substantially increase water productivity.
- ✓ The optimized irrigation could increase farmers' net income compared to other salinity treatments.
- ✓ Under automated drip irrigation, applying two leaching cycles (C) and maintaining high soil water content (H) during the growing season achieved similar performance.
- ✓ It is suggested to investigate the proposed irrigation scheme for medium and heavy soil textures, various levels of water salinity, different crops, and climates.

CONFERENCE AND EXHIBITIO

