

Department of Primary Industries

Water & energy productivity in irrigated agriculture

Finding effective solutions to the cost price squeeze By Luke Jewell

Overview of talk

- Australian and NSW primary industry energy sources and use trends
- Which industries use most energy and why
- Water use efficiency vs energy productivity – the 'nexus'
- Energy sources and emissions
- NSW DPI Climate Change and Energy program
- Addressing policy and making the grid work for industry

Who cares about energy anyway?

At a glance

ECONOMIC CHALLENGES FACING AUSTRALIAN BUSINESS

Directors have rated energy policy and pricing, tax reform and infrastructure development as the big issues of 2018.

Energy policy

Taxation

Infrastructure

58%

47%

42%

Productivity

growth

International competitiveness

35%

29%

27503948_393466 Dire Gt 0150292 011 00013295_0.jpg (1536 x 204 ...

ARENA study – renewable energy opportunities in water sector

	ALL	AGRICULTURE & IRRIGATION	URBAN WATER		
High Priority (Mean Rank <4.5)	D. Storage technologies E. Small scale solar PV/wind	C. Agricultural water use F. Renewables ready infrastructure G. Water/energy/food nexus	B. Bioenergy I. Water sector collaboration		
Medium Priority (4.5 <mean rank<6)<="" td=""><td>H. Water supply & climate change</td><td>I. Water sector collaboration</td><td>F. Renewables ready infrastructure</td></mean>	H. Water supply & climate change	I. Water sector collaboration	F. Renewables ready infrastructure		
Low Priority (Mean Rank >6)	A. Desalination	B. Bioenergy in wastewater	C. Agricultural water use G. Water/energy/food nexus		

"Economic and engineering analysis to establish an energy baseline in irrigated agriculture, and correlate the relationship between energy and water. Factor and quantify the potential savings in both energy and water" – ag stakeholder future research focus.

Australian agriculture energy use trends

Final energy consumed Aust agriculture x fuel PJ/yr

Energy sources in NSW agriculture

- 'ADO' = Automotive Diesel Oil
- Highly dominant source of energy in NSW/Aust agriculture.

Energy use – cotton direct on-farm

- ~%50 75% energy used in irrigation
- ~ 80% is diesel powered
- Benchmark is

Source: Powell & Welsh (2016)

Water energy nexus

Push towards WUE can result in increased energy use

Indicative 2014 irrigation grid electricity consumption for different systems and total dynamic head Source: Eyre, Alexandra et al. 2014

Energy costs vs water use efficency

Irrigators switch watering systems to save power

f Share on Facebook Share on Twitter

Posted 30 July 2013 at 12:20 pm

Rising power costs have forced some irrigators in southern NSW to revert to less efficient ways of watering crops.

Darlington Point irrigator Matthew Stott admits drip irrigation, which uses less water but more power to run, is no longer viable.

Mr Stott, who produces winegrapes, almonds, popcorn and cotton, says growers are torn between saving money and saving water.

"There's no doubt drip is the most efficient way to irrigate in terms of water efficiency because you give the plant what you want on a daily basis.

"You're not getting the over-watering, underwatering patterns of a weekly cycle of flood irrigation.

Cotton Australia says over the years growers have invested in more energy intensive equipment to reduce their water use, but that's now become cost prohibitive (Laurissa Smith)

"But now the price of power, and just of energy in general, is pricing those sorts of systems right out. Now you can't afford to do it."

Mr Stott says pumping costs for bore water on his farm have jumped from \$45 per megalitre three years ago to \$70 per megalitre.

Water price vs energy cost

Water application rates vary by crop by year (2006-2016)

Water application rate, by commodity, Murray–Darling Basin 2006-7 to 2015-16 (ABARES Irrigation survey data)

Water sources drive energy use

Emissions from various energy sources

Department of Climate Change and Energy Efficiency emission factors (National Greenhouse Account Factors 2013). NB Electricity (NSW) Scope 2 and 3 emissions factors - consumption of purchased electricity by end users .

Ag energy vs water use intensity

NSW Climate Change Fund

- NSW Government has been consulting with agencies and the community on the expenditure of \$500 million from the Climate Change Fund (CCF) since December 2016
- DPI has been developing a strategy and a range of projects to assist the sector respond to rising energy costs and continue to contribute to economic growth in NSW as the climate changes
- A suite of projects specifically targeted at the NSW primary industries sector has now been approved for funding in 2018.

Primary Industries Climate Change Strategy

Growing primary industries under climate change

DRIVERS	RISKS	PR	PRIMARY INDUSTRIES CLIMATE CHANGE STRATEGY Work with electricity generators and landowners to investigate and trial the use of biomass in energy generation		OUTCOMES	
Higher temperatures	Reduced productivity and profitability	CLIMA			Increased productivity and profitability (\$/yr)	
Increased drought frequency & intensity	Decreased yields and pasture availability				Improved resilience to extreme weather	
Increased rainfall	Reduced water availability		Fund research projects to support clean		(↓ \$ loss/extreme weather event)	
variability	Changes to fish growth and	Eneray	energy for regional NSW		Yield reductions mitigated (↑ \$/ha)	
More extreme weather events	Spread of pests and diseases into	Security	Help primary industries plan for net zero emissions		Safeguard from energy price	
Changes to quality of water for irrigation	new areas		Develop a new website so farmers earn extra income by accessing carbon markets such as the Emissions		increases (↓ \$/kWh)	
	Impacts on ecosystems				Increased energy efficiency	
Changes to ocean currents	Social and health impacts on regional communities		Reduction Fund		New income streams from energy	
Ocean acidification	OPPORTUNITIES	Energy	businesses identify options to improve		generation (↑ \$/year)	
Increased energy costs	Investment in renewable energy	Efficiency	their energy efficiency and reduce costs		Growth of industries in new areas (↑ \$/year)	
Creation of new markets for carbon	Increased energy efficiency		Support farmers to pilot projects that build resilience in rural communities and		Improved protection from pests and	
	Reduced reliance on energy grid	Protecting Local	primary industry sectors		diseases (↓ \$ loss/year)	
Falling cost of renewables	Carbon sequestration	Communities	Deliver cutting-edge research and knowledge to better understand the		Carbon sequestered and emissions	
Concerns about network capacity and	Emissions reduction to achieve targets		vulnerability of our agricultural sector, and town and rural water resources		stored, ↑ \$/year)	

Current work to support clean energy

- Social research to identify the major impediments to adoption of hybrid or off-grid renewable energy;
- Investigation of energy demand profiles in regional NSW and opportunities to address gaps in the existing energy networks;

India's first 1MW canal-top solar power plant at Chandrasan village near Mehsana, 45 kms from Ahmedabad on World Earth Day, April 22, 2012. (BCCL)

Mid to long term outcomes

- Using case studies to investigate micro-grids as a potential practicable solution to energy network 'bottle necks' in regional NSW, and rising energy costs.
- Achieving a positive outcome for the sector will also likely involve NSW developing and advocating for policy and regulatory reforms to the national energy market rules administered by Australian Energy Regulator and the Australian Energy Market

Operator.

Renewable microgrid momentum is growing around the world

Useful resources - checklists

Solar Diesel Hybrid Pumping Systems

A checklist for solar irrigation quotes

Grid Connected Solar Pumping Systems

A checklist for solar irrigation quotes

Available on NSWFA and OEH websites

Useful resources - websites

NSW Farmers - Ag Innovators

AgInnovators			Projects	News	Case Studies	Eve	ents	Videos	About 🗷	Subscrit		
	Digital Tech	Sustainability	Energy									Search (

Solar battery

calculator

QFF - Energy savers

ADVOCACY NEWSROOM

PROJECTS EVENTS FARMING IN OLD

News & Opinion

about regional

electricity supply

ictivity New thinking needed

New checklists help farmers assess their suitability for solar

Biofuels Home biogas: turning food waste into

Biofuels \$14m project to turn livestock waste into renewable energy profitable bioproducts

WA's world-first 'solar glass' set to power selfsustaining agri-oases

View all

ENERGY SAVERS

Energy Savers audits of around 130 farms have identified 7,500 MWh per year in energy savings with a payback of less than 5 years and a total of over \$3 million per year in energy savings.

Over 44% of farms have implemented some of the audit recommendations with another 18% planning to do so.

The Queensland Government has committed to extend the Energy Savers program with 200 more audits and \$4 million in rebates for farmers to implement audit recommendations. Further details available here.

There are also audits and rebates available for customers that use over 100 MWh per year. More details available here.

READ MORE

Battery storage – emerging but expensive

<u>Charge Works consultancy &</u> <u>training</u>

CONSULTANTS CASE STUDIES CONTACT

Thank you!

Questions?